خانه / هوش مصنوعی / Data Science / آموزش کتابخانه pandas در پایتون

آموزش کتابخانه pandas در پایتون

کتابخانه pandas یک کتابخانه open-source با گواهی BSD است که فوق العاده عمل کرد بالایی دارد و همچنین بسیار راحت شما می توانید از آن برای ساختار دادن به داده یا تحلیل داده استفاده کنید.

آموزش کتابخانه pandas در پایتون

زمانی که کاربر زبان برنامه نویسی پایتون هستید و قصد دارید در زمینه هوش مصنوعی یا علم داده فعالیت کنید. باید حتما بدانید که چگونه می توانید از کتابخانه بسیار خوب pandas چگونه استفاده کنید.

کتابخانه pandas یک کتابخانه open-source با گواهی BSD است که فوق العاده عمل کرد بالایی دارد و همچنین بسیار راحت شما می توانید از آن برای ساختار دادن به داده یا تحلیل داده استفاده کنید.

سه مفهوم در این کتابخانه بسیار مهم هستند:

  • Series (1D Array)
  • DataFrame (2D Array)
  • Panel (3D Array)

تعریف Series: به عنوان یک آرایه یک بعدی و از نوع immutable در نظر گرفته می شود.

تعریف DataFrame: یک آرایه دو بعدی است که دقیقا به مانند جدول های بانک اطلاعاتی رفتار می کند.

تعریف Panel: یک آرایه سه بعدی است که دقیقا به مانند مکعب داده رفتار می کند.

python_pandas [Phika.ir]

برای نصب این کتابخانه کافیست دستور زیر را در ترمینال خود بنویسید:

pip install pandas

برای ساخت یک Series کافیست به شکل زیر عمل کنیم:

در مثال بالا یک آرایه خالی از Series ایجاد کردیم.

مفهوم data: در آرگومان اول شما تنها داده ای با نوع آرایه (Array data) را از شما می پذیرد.

مفهوم index: طول آرایه را مشخص می کند. اگر مشخص نشود بصورت پیشفرض طول آرایه را خودش محاسبه می کند.

مفهوم dtype: نوع داده ای اعضاء داخل آرایه را مشخص می کند که به صورت پیش فرض خودش تمامی آن ها را حدس می زند.

مفهوم copy: یک کپی از داده شما می گیرد. بصورت پیشفرض بر روی False قرار دارد.

در مثال زیر یک آرایه یک بعدی را به Series می دهیم.

در مثال زیر یک آرایه با اندیس مشخص شده از سمت کاربر را نشان داده شده است.

دقت کنید که طول آرایه با طول اندیس ها باید یکی باشد.

همچنین یک series را می توانید از روی یک دیکشنری نیز می توانید Series را بسازید:

که در این حالت کلید ها به عنوان اندیس مقادیر در نظر گرفته می شوند.

در مثال زیر به راحتی می توانید به داده ای دسترسی پیدا کنید:

برای ساختن DataFrame کافیست به شکل زیر عمل کنیم:

 

در مثال بالا به راحتی می توانید مشاهده کنید که یک جدول با ستون های Name و Age ساختیم که مقادیر آن ها نیز در لیستی از data قرار گرفته اند.

در مثال زیر با استفاده از یک دیکشنری جدول خود را می سازیم:

 

نویسنده: سپهر اکبرزاده

دیدگاهتان را بنویسید

نشانی ایمیل شما منتشر نخواهد شد. بخش‌های موردنیاز علامت‌گذاری شده‌اند *

نه − 1 =

رفتن به نوارابزار